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CUMULATIVE BEHAVIOR OF CONVERGENT SHOCKS 

WITH DISSIPATION EFFECTS 

V. S. Imshennik UDC 533.6.01 

1. One-dimensional (spherically or cylindrically symmetric) converging shock waves represent a familiar example of 
cumulative gasdynamical processes, which play so vital a part in nature and technology [ 1 ]. Asymptotic solutions of the 
converging shock-wave problem in the neighborhood of the center of axis of symmetry are found in the well-known self- 
similar solutions indicated independently by Guderley [2] and Landau and Stanyukovich [3]. The domain of validity of 
these solutions depends on the initial and boundary conditions (the simplest of which occur for a cold stationary gas with 
constant density p0 and a constant-velocity piston), but a self-similar solution is almost always realized in a sufficiently 
close neighborhood [4]. In this solution, at the instant of "cumulation" of the shock front (usually taken as t = 0) and 
strictly at the center or axis of symmetry, the velocity of the front ("shock velocity") as well as the pressure and tempera- 

. , . . : / h - :  : - - k r h  - - t )  , t)~(-~-:) ~r~l--h)~ where the self- ture at the front increase without bound: rfN[--~) Nrf ~.rf ,,, �9 pf N rf N ( -  

similarity index k = k(7) ~> 1 for an isentropic exponent of the gas 7/> 1 [4, 5]. The self-similar variable, on which depend 

all the unknown functions of the self-similar solution, has the form g = r / r f  = ~or k / ( - t )  in this case, where at the shock 
1 

front ~ = 1 and r f=  ( -  t/~0)~. The only arbitrary constant in the self-similar solution has dimensions cm-ks and quantitatively 

characterizes the "strength" of the initial impulse. The self-similar solution admits continuation in the reflected-shock stage. 
The cumulative buildup of energy between the shock front ~ = 1 and an arbitrary value of the variable ~* > 1 behind the 
front (~* normally coincides with a singular G-line that nowhere intersects the C-characteristics directed ~oward the shock 
front) is charadterized by the following dependence on the radius of the shock front: g a ~ ~}-~-h(spherical case) or E a N ~-_oh 

(cylindrical case) [4]. As a result of the cumulative process, the energy of this region decreases as rf -+ 0 more slowly than 
r~ (spherical case) or r~ (cylindrical case), because the self-similarity index k > 1 (or "r > 1). 

In this article we investigate the constraints imposed on the "cumulation" parameters of the self-similar solution (with 
inclusion of the reflected-shock stage) due to dissipation effects. These effects clearly become significant when the effective 
mean free path of the investigated gas particles is commensurate with the radius of the shock front, I s "~ rf. The allowance 
for dissipation effects, first of all, shows that all the hydrodynamic and thermodynamic variables are bounded and, second, 
yields very general expressions for the maximum cumulation parameters, which are determined simultaneously with the 
characteristics of the self-similar solution and dissipation effects. Of course, the cumulation parameters can actually also be 
affected by the deviations of the motion of the gas from one-dimensionality in connection with the singularities due to the 
well-known instability of converging shock waves [6, 7]. We realize that these deviations are rendered inconsequential by 
the sufficiently symmetric initial and boundary conditions of the problem. Accordingly, violations of the one-dimensional 
symmetry of the motion can not only attenuate the cumulation parameters, but can amplify them as well, as shown by the 
examples of two-dimensional cumulative motions in the case of a plasma focus and a current sheet [8, 9]. 

For sufficiently strong converging shock waves, in general, the most interesting case is a fully ionized plasma. If a 
high-temperature plasma generated in a cumulation zone has a sufficiently high density, its motion is described by the 
system of two-temperature gasdynamic equations with well-known dissipation effects, which in this case are associated with 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 10-19, November- 
December, 1980. Original article submitted April 10, 1980. 
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the ionic viscosity and thermal conductivity, the electronic thermal conductivity, and finally the energy exchange between 
ions and electrons [ 10-12]. In the classical problem of the structure of a piane stationary shock front it has been shown 
[4, 13] that the inclusion of these dissipation effects imparts a continuous structure to the front for any shock strength. 
The existence of a continuous solution in this case implies boundedness of  the derivatives of  all variables.* The indicated 
system of equations has been used to carry out numerical calculations of  complex plasma flows in cylindrically or axially 
symmetric geometries (comprising a two-dimensional problem in the latter case), which are inherent in cylindrical or non- 
cylindrical Z-pinch [14, 12, 15]. In particular, the cumulation parameters of  converging shock waves in the pinch axial 
zone are obtained in these calculations. Arrival at a self-similar solution is observed in this situation, but the particular 
boundary conditions and other parameters of  the system are not favorable to the general occurrence of  such a solution. 
A self-similar solution for a converging cylindrically symmetric shock wave in the axial zone of  a plasma has been specially 
studied [ 16]. The present article is essentially a continuation arid generalization of [ 16]. Here we derive general relations 
for the maximum cumulation parameters, but not exclusively in the case of a plasma or in the cylindrically symmetric 
problem. We include in the study a different set of  dissipation coefficients, corresponding formally, in accordance with 
[17], to a gas composed of particles with arbitrary (but of  the power-law type) interaction forced between particles, and 
we take into consideration a form of spherical geometry of the system. 

It is quite clear from the foregoing considerations how to construct such a solution for any kind of  dissipation terms 
in the gasdynamic system of equations for any equation of  state of the gas. The nontrivial problem of the validity of  the 
gasdynamic description of  the gas near the axis or center of symmetry is completely solvable only by comparison with the 
corresponding kinetic treatment. However, the validity of  the gasdynamic approximation with regard for the above-mentioned 
dissipation effects to the problem of the structure of  the front of a shock wave or, more precisely, a collision shock wave 
[ 13 ] lends credibility to the present investigation. It can even be stated that the disregarded kinetic effects only slightly alter 
the quantitative estimates of the cumulation parameters without affecting the order of  magnitude of  the resulting variables 
and general relations. 

2. In the neighborhood of  the center or axis o f  symmetry of  the system we write the one-dimensional gasdynamic 
system of equations with regard for the effects of  viscosity and thermal conduction of  the gas where the corresponding 
coefficients have a nonlinear behavior (v = 1 for the cylindrical case; v = 2 for the spherical case) [ 14, 18]: 

dp , l 0 d d o (2.1) 
dt -i- 9--,.7- -ST-r (r'v) -- 0, at Ot ! - v - - ~ r ;  

) I ] d, , 0 (apT) 4 0 (q 0v ' .-~-v~ 2q-gT'\S:-" I~ Vr 0n0r ; (2.2) 
P dt ; Or 3 Or ~ -;- - - '  

--  [i ) v ' & "  3 5 v  v :+ -~'-r/r  • ) ' (2.3) dT do 4 I/ 0t, ,,2 V'T" 
7 l P - d i  - ' - a T  d-?~ -- ;3 ~I ~ -- 7 r 

where a is the gas constant ( p =  a p T  and a = k/m in the case of  a simple gas comprising identical particles of  mass m), rl 
is the viscosity coefficient, and:• is the thermal conductivity. Let these nonlinear coefficients depend only on the tempera- 
ture T in accordance with the same power-law relation: 

~1 = *lo(aT) ~ , • = • s. (2.4) 

These relations are obtained for a simple gas of  identical particles interacting with a mutual force F % r -m, so that s = 
1/2 + 2/(m - 1) [17]. In this case the Prandtl number Pr N ~1/• = const, this constant depending only slightly on the 
power m in the force law. In the special case of  a plasma, where F * r -2, i.e., m = 2 and s = 5[2, the weli-known plasma 
relation [19] follows at once from (2.4). In a plasma, however, it is necessary to treat a mixture of  ions and electrons~ 
rather than a simple gas, whereupon the initial system of equations (2.1)-(2.3) is somewhat more complicated. This elabora- 
tion of  the initial system is carried out below in dimensionless form. We take the isentropic exponent 7 = 5/3 in (2.3), 
limiting the discussion to a monatomic gas. 

The system of equations (2.1)-(2.3) must be reduced to dimensionless form by introducing dimensionless variables 
according to the relations 

cr = P/P0, x = r,'ro,, T = t/to, u. = v/vo (vo = ro/lo), 

:[[-- :'o p Po : :  9oT-~/ 0 To To t- IJ = aO. 
(2.5) 

The system of units (or scales) in relations (2.5) is based on the three dimensioned quantities ro, to, and Po" 
Substituting these quantities into Eqs. (2.1)-(2.3), we obtain a certain variation of  the conventional dimensionless system 
of equations 

*It is expected that in this case, in any neighborhood of the center or axis of  symmetry these derivatives will remain bounded 
and the functions themselves all therefore remahi fiadtc. 
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act (~ I ,i ~ ~l a a (2.6) 
aT 7 - 7 - . , :  ( z ' u ) = 0 ,  a~ -- ,J~ " " .. . . . .  o . , '  

~,, 0 ( ~ o ) =  / I o  , - a 7 ) : , ' o  ~ , ,  ~ ,, ~o' a~ ~ ox ~ ~ ,, /,,-7-, I 2 �9 0,~ ; ( 2 . 7 )  

0I! - - -  ! . . . . .  x'(-)* ao ~ (2.8) 
T ~ y ~ -  dr I~e 1,\-75-.c ,, - -  ,r , o,c '2 a' _a ~ lie l:'r xv Ox \ ~ P  

where the dimensionless numbers Re and Pr, according to (2.4) and (2.5), are given by the expressions 

t 4 ~lo r~ s-~ i 3 • 
ae a Po t~ ' - ~ '  er =--U,-7%0" (2.9) 

Up to now the length and time scales (r o and t o) have been arbitrary (the density scale must naturally coincide with the 
constant density of  the undisturbed gas), We now relate them to the parameters of  the self-similar solution; we assume 
that their interrelationship is such as to satisfy the equation for the shock front }0 r~t~ -1= 1, i.e., 

~orkoto 1 = i. (2.10) 

For  the final determination of r o and t o we require that the dimensionless number Re from relations (2.9) be equal to 
unity, i.e., 

28--2 7,O8(1--h)+b~--2 4 % r o 4 ~]o 
-5- Po ~'~-1,'~(~-~) a Po ~ - ~  --  l ,  (2.11) 

~0 0 bO 

whence we obtain the units r o and t o in explicit form [with regard for  (2.10)] : 

1 l 

ro = - -  ~o ~-1 to = ~ 
~]0 ' 

(2.12) 

Thus, with r 0 and t o chosen according to (2.12), we must put  Re = 1 in Eqs. (2.7) and (2.8), retaining the number 
Pr independent of  the scales r 0 and to, as determined from (2.9). The dimensionless number Pr, as mentioned above, 
depends only slightly on the power m in the force law, and if  we neglect this dependence (obtained in the higher approxi- 
mations of the Chapman-Enskog  method),  then in the first approximation [17 ], 

l 3 ~r = 45 * 
Pr 4 a% 't6 (2.13) 

It may be assumed that the system of  equations (2.6)-(2.8) with Re = 1 no longer contains any parameters. All that remains 
is to formulate the boundary conditions in order to complete the statement of the problem of  the motion of  the gas near 
the axis or center of  symmetry for a converging self-similar shock wave. 

3. It can be shown that the dimensionless number Re % r 0/l s,  where l s is the effective mean free path of  the 
particles. Thus, in order of  magnitude the viscosity coefficient ~1 N pl~VT , where v T * (aT) 1/2 is the average thermal 

velocity of  the particles. We form the ratio r o/l  s and once again make use of  the det'mitions of  the dimensionless quantities 
(2.5) and relation (2.4): 

1 

re N . . . . . .  roPvT roP (aT)2 rope Po t~ ~-1 (3.1) 
os--o /~ ~ %(aT) ~ ,-~ % r~ " 

% (at0) - 

i.e., according to (2.9), ro/l s '~ Re. Consequently, by taking Re = 1 we make the scale r o in (2.12) equal in order of  
magnitude to the effective mean free path o f  the particles. This means that  the outer boundary of  the domain of  solution 
of  the dimensionless system of  equations (2.6)-(2.8) (with Re = 1) must be taken as x = X0(~) ~ ,  l .  For  such a boundary 
it is logical to specify a Lagrangian trajectory and the pressure on it, borrowed from the self-similar solution. We thus 
specify the boundary conditions 

*In the case of  rigid molecules (m -~ r162 the factor 1.0088 rises in the second approximation,  i.e., Pr -1 = 2.84, whereas for 
the case of Coulomb forces (m = 2) the corresponding factor in the second approximation is 1.0854, i.e., Pr -1 = 3.05 [17]. 
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u = O, O0 lox  = 0, x = 0; (3.2) 

+) dXo/dx = u, O0/Ox = O, oO - -  k ~ "2 ~ ~- H (x), z =  

In (3.2) the pressure from the self-similar solution IX(r), strictly speaking, is taken to be equal to the radial component of 
the momentum flux, rather than to the pressure per se. However, the additional viscosity term in the parentheses ('~u~r) 
is very small if the Lagrangian trajectory is chosen in the way described above, namely sufficiently far from the center or 
axis of symmetry. 

It can be shown that II(r) is a universal function that does not depend on the dimensioned parameters of the self- 
similar solution Go and Po in the adopted system of units (2.5). Thus, according to [4, 5], the self-similar solution has the 
form v = (r.t)U(~), p --- po(r~/tz)P(~), where ~ = --~0rkt -z , and in the dimensionless variables (2.5) with the use of relation 

(2.10) between the scales r o and t o 

2 ~ 22 2 1 ro z ~ U t % x . 
% t o x U (~) -- x (~), II = ~ P0 ~ x--r P (~) = -~- P (~), (3.3) 

where the specificity of the choice of (2.10) is manifested only in the invariance of the self-similar variable ~. The dimen- 
sionless functions U(O, P(~), etc., themselves turn out to be invariant in the new system of units. We write the elementary 
equation for an arbitrary Lagrangian trajectory X 1 (r): 

1 

d X  1 
= (3.4) 

where the initial value X ~ ~ t corresponds to the instant o f  passage of the shock front, i.e., at x = %, X ~ = xf(~o) (t 

-~x~ Ti -~ is the equation for the shock front in dimensionless coordinates). On the trajectory X~ (z) the function 11(r) 
entering into the boundary conditions (3.2), according to (3.3), has the form 

x~('O _ (  x~ ( '0) 
n (T) = - - - - 7 - v  -~- , (3.5) 

where X1 (r) is given by Eq. (3.4). It is evident from (3.4) and (3.5) that the function H (r) is of a universal nature. We 
note that in (3.2) the trajectory Xo(r) differs in principle from the initial self-similar trajectory X 1 (r) insofar as the function 
Xo(r) deduced from the solution of the system of equations (2.6)-(2.8) with Re = 1 is now influenced by dissipation effects. 
However, for a sufficiently large o-.. X~ # i the dissipation effects become insignificant, and X0(r) ~ XI(x)  The closeness of 

these functions can be regarded as a quantitative criterion of the correct choice of the outer Lagrangian trajectory. It is 
quite clear that if (X ~ is sufficiently large in the above-stated sense, then the solution of Eqs. (2.6)-(2.8) with any other 

value (X~)" > (X~ ' will not differ in any way from their solution with the previous value (X ~ This fact implies the 
existence of a unique asymptotic solution of the problem in the neighborhood of the center or axis of symmetry.* 

4. Let us assume that the indicated problem has been solved by the numerical method. It is remarkable that for a 
fixed particle-interaction law [power s and number Pr in Eqs. (2.7) and (2.8)] in the given geometry [power in Eqs. (2.6)- 
(2.8)] for the given self-similar solution [self-similarity index in relations (3.4), (3.5) and the boundary condition (3.2)] it 
does not depend on any other parameters. The physical considerations set forth in No. 1 suggest that this solution for the 
quantities a, u, and O will be bounded for a finite value of the function 1I (r) in the boundary condition. Let us suppose 
that the maximum values Uraax, Omax, Hmax have been determined. We express the corresponding characteristic values of 

the velocity u'=~, temperature O~aax, and pressure II ~n,~ for the complete gasdynamical problem of a converging shock wave 

in the self-similar case in terms of the foregoing maximum values. 

i For the scales of  the quantities in the complete problem it is natural to include the characteristic pressure Po along 
t �9 with the initial density O o = O o and the radius of the system r o. This additional characteristic literally determines the 

*We call attention to the condition oo/ox = 0 (at x = 0), which actually predetermines the finiteness of the temperature 
at the point x = 0, but not of any other quantities (density and velocity) (cL an isothermal discontinuity). However, a 
direct numerical solution [ 16], albeit carried out in one special case, shows that all the hydrodynamic and thermodynamic 
variables in the given statement of the problem turn out to be finite. This result is consistent with our assumptions in 
connection with the existence of a continuous solution of the problem of the structure of the shock front (see the 
preceding footnote). 
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"strength" of  the initial impulse. Then the corresponding dimensionless variables [by analogy with (2.5)] have the form 

Ol ~ / ! --- ~0)~ Xt  r i~  t p TI ~: t F 0 
= - -  tP0 =--7- ,  -- , ,  = to - -  - -  ~ , 

, Oo ~o Po (,Oo/p ~ 

�9 ) ) t ' r~ O' T t Po 
% tO , ,1, 0 a ~0 " 

(4.1) 

The constant Go in the self-similar solution is expressed in these variables by the equation 

| 

, 

~o=--rfhtf=~ro toxf Tf = ~ o ( r ; ) ' - h  . o = - - x f  ~f, 
" \ P o ]  ' 

(4.2) 

t in which ~o is the constant of  the self-similar solution in the units (4.1). 

The characteristic maximum temperature O' max can then be expressed in terms of  the calculated quantity (gmax as 

follows with regard for (2.5), (4.1), (2.10), and (2.12): 

, r 0 = r~ Po r2o (l-k) Po 
Omax_ : ( g m a x . " ~  Omax  ~ to  --P'o = O m a x  ~ -7"po : 

2(!--h) 2, l - -k)  (4.3) 
0 t Po [ 3 Po . _ ) ~sll--h)+h--~ o. 1~+2s(h-z) max--/-7~-o __  ._ ~o s z I / 3 \~s(1--h)+h--~ 

1 
* 4 ~ s - ;  - 1  

Now by analogy with (3.1) we calculate the ratio of  a certain effective mean free path l~ = -5- al~ (at0) "po = 

--5- ~1o p;-~ to the length scale r o, denoting it by the symbol ~: 

1 1 

l* ~ ~1 o ( P " 4 Po 
a = ~ - , = - ~  ~lo (4.4) 

r ~ 3 Poro \ - ~ o  / s+~ , 
Po r0 

The parameter u from (4.4) determines the role of  dissipation effects and therefore occurs as a coefficient in all the dissipa- 
tion terms of  the system of  equations (2.1)-(2.3) writ ten in the uni ts (4 .1) .  For  the more complex plasma case this fact has 
been proved in [ 12]. It is clear that only under the condition u << 1 is it  possible to  have a self-similar solution for a 
converging shock wave, where the characteristics of  this solution, the constant Go from (4.2) in particular, do not  depend on 
the dimensionless parameter  u. Then, substituting the constant Go from (4.2) into (4.3) and using the definition (4.4) for 

the parameter u, we finally obtain 
~(h-]) 

t t, . O m a x  = Omax  (~o) "~s(l--h)+h--2 ~, os(1--h)+h--2 ( 4 . 5 )  

t 
We supplement (4.5) with the corresponding expressions fo r I Im=  and u'm= : 

t t i i if2 
IImax = IIma~ ( O m a x / O m a x ) ,  Umax = Umax (e,~,,,,de,n..) . (4.6) 

Of course, expressions (4.5) and (4.6) interrelate not  only the maximum values of  II ' ,  O', and u'  with the quantities l I ,  O, 
and u, but  also any values of  these quantities for an arbitrary time t and point  in space r. I t  is important  to note that  the 

t quantities Oraax, II~ax, and u'  themselves at once give the degree of  cumulation in the converging shock wave, because in 
nlax 

t 
the system of  units (4.1) all the characteristic quantities are of the order of  unity. The constant Go "~ 1. 

To illustrate the general relation (4.5) we consider the special cases of  Coulomb (m = 2, s = 5/2) and rigid (m -+ ~ ,  
s = 1/2)par t ic les  for a spherically symmetric converging shock wave (v = 2), such that,  according to [3, 5], for 3' = 5/3 the 
index k = 1.453. Accordingly, from (4.5) we obtain two dependences on the parameter ~, which is indicated in parentheses 

for the indicated cases: 

( ) , P0 (9' t 
(gmax N (gmaxOr, -O-z~e ~ ,~" , max N O m a x  ~ -0 .9~6  ~ N 

" Poro Poro 

5. In  the case of  a fully ionized ideal plasma with singly charged ions (Z = 1) the initial equation with all essential 
dissipation effects included have the following form instead of  (2.6)-(2.8) [14, 16]: 
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t u 0O~/~ ] " 
(5.1) 

,o ,  ,o ,,2[(.;  (0u 
T O ' T ~  - -Oi - -~ -  = O i  ~ - - v T  Ox 2 

" ~ 00~ ~ / m .  kl/~ 0 i -  0 e , 3.t __~z (xVOit, j as 
T --xV --  5,It/'~" ) -e~ ; 

u)]§ 
x 

(5.2) 

--3 doe A cza = 1.76 (-~--)/M \1/~ t 0 fxv05/,~ OOe \ [ m \11~ ~ _ _ 0  i -- O e 
: . 7 7 : ) + 5 - 4 [ w )  o y ,  �9 (5 .3)  

The equations (5.2) and (5.3) for the ion and electron temperatures Ot andOe include the ratio of  the ion mass M to the 
electron mass m. The ion-electron energy exchange term is proportional to (m/M) 1/2, and the electronic thermal conduction 
term is inversely proportional to (m/M) 1/:. The system of equations for a two-temperature fully ionized plasma (2.6), 
(5.1)-(5.3) is written in the dimensionless units (2.5); forboth  temperatures the scale is the same, To, II  = ~(0~ + Oe), and 
a = k/M. The length and time scales r o and t o in this case are given by relations (2.12). In place of  the number Pr for a 
simple gas from (2.13), we now have several dimensionless numbers characterizing the ionic thermal conduction (Pr~ -1 = 3.1), 

the electronic thermal conduction Pr7 ~ = t,76 ( , and finally the ion-electron energy exchange__CT~ = �9 
For the complete determination of  these expressions we add the constant factor of  the ionic viscosity coefficient 7/o [see 
(2.4) and (2.12)]: 

"qo - - - -  0,8 tM~e-*L-~, (5.4) 

where L is the Coulomb logarithm (in accordance with [ 17] L = 2A, where A is the conventional Coulomb logarithm; see, 
e.g., [19]) and e is the elementary electrical charge. 

For a cylindrically symmetric converging shock wave @ = 1) with self-similarity index k = 1.226 and in the case of  
a deuteron plasma (M/m) 1/2 = 60.5 this problem has been solved numerically in [ 16]. The boundary conditions in this case 
are formulated according to (3.2), and the functions X 1 (r) and H(r) given by relations (3.4) and (3.5) are also borrowed 
from the self-similar solution. Certain details of  the numerical solution may be found in [16]. The domain of  appreciable 
deviation from the self-similar solution is characterized by x ~ 0A.  Here we write the values Oi max = 0,6t4 and O~ max = 

0.268 (Urea x ~-, - -0 .95 ,  lima x ~ t9)  of the maximum parameters of  the plasma in the axial zone. In accordance with these 

data we write the maximum parameters at once in the system of units for the complete problem (4.1), generalizing relations 
(4.5) to the two-temperature case: 

O',ma= = 0.61  o; ox = 0 .26s  

where the dimensionless parameter a is determined in (4.4) with s = 5/2 and r/o from (5.4), 
r 2  

M a P0 
a = 1.08 - -  3 i eaL P0r0 

The constant of  the self-similar solution in the system of units (4.1) ~ = - -  X~-1"~%~ must be specified from the results 

of  numerical solution of  the complete problem, in which dissipation effects are actually insignificant. If  the quantity Po 
taken as the pressure scale in (4.1) indeed characterizes the external impulse, i.e., is chosen in accordance with the boundary 
conditions of  the complete problem, and r o characterizes the radius of  the system, then obviously this constant, as already 
mentioned, Go 'x, 1, and quantitatively the degree of  cumulation is mainly determined by the parameter a, which in general 
is very small (c~ <,< 1). The maximum cumulation parameters for the velocity and pressure can be determined from Eqs: 
(4.6). 

6. The statement of  the problem of a converging shock wave in this article actually suggests three distinct stages in 
the cumulative process. First, a certain external impulse (externally applied pressure, moving piston, etc.) imparts motion 
to the gas in the given system (with set values of, say, the initial density and radius), during which time a self-similar con- 
verging shock wave is generated. The second stage entails its propagation toward the center or axis of  the system according 
to a self-similar law. Dissipation effects do not play a significant role in these two stages. The third stage of  the process, 
on the other hand, proceeds under the dominant influence of dissipation effects, the nature of  which is determined by the 
properties of  the gas or plasma. In this stage the front of the converging shock wave attains the center or axis of  the sys- 
tem and is reflected from it. For known parameters of  the self-similar solution we have formulated the gasdynamical prob- 
lem with dissipation effects, corresponding to the third stage of  motion. General relations have then been established be- 
tween the results of  solving that problem and the solution of  the complete problem with the original initial and boundary 
conditions. 
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This subdivision of the complete problem could be avoided if it were possible to take correct account of the dissi- 
pation effects in all three of the indicated stages, for example if a universal numerical method of solution were available. 
But even in this unrealistic situation it would still be impossible to obtain general relations for the cumulation parameters, 
such that the use of numerical methods could be minimized. It also suffices to note that the delineation of the third stage 
(by analogy with the classical problem with a boundary layer in an ideal fluid), for which we have written out the system 
of equations (2.6)-(2.8) (gas) o r (2.6), (5.1)-(5.3) (plasma) subject to the boundary conditions (3.2), demonstrates (and we 
speak cautiously here, at the physical level of rigor) that all cumulation parameters having a singularity in the self-similar 
solution are bounded. This assertion is most likely true in the most general case of a self-similar converging shock wave. 
In relation to the general cumulation problem discussed by Zababakhin [20], the case of self-similar converging shock waves, 
bearing in mind the indicated reservations, is therefore an example in which, contrary to [20], dissipation effects chosen by 
a physically justified procedure eliminate the unbounded growth of the cumulation parameters. 

The author is deeply grateful to V. F. D'yachenko and Ya. M. Kazhdan for their attention and useful discussions of 
the results. Appreciation is also due Ya. M. Kazhdan for furnishing certain data on the self-similar solution in the cylindri- 
cally symmetric case and for incisive critical remarks regarding the existence of a solution of the gasdynamical problem with 
regard for dissipation effects. 
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